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Domains and boundaries of non-stationary oblique 
shock-wave reflexions. 2. Monatomic gas 
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Institute for Aerospace Studies, University of Toronto, Ontario, Canada M3H 5T6 

(Received 3 January 1979) 

Interferometric data were obtained in the I0 cm x I8 cm hypervelocity shock tube 
of oblique shock-wave reflexions in argon at initial temperatures and pressures of 
nearly 300 "K and 15 Torr. The shock Mach number range covered was 2 < M, < 8 
over a series of wedge angles 2' < 0, 6 60'. Dual-wavelength laser interferograms 
were obtained by using a 23 cm diameter field of view Mach-Zehnder interferometer. 
In addition to our numerous results, the available data for argon and helium obtained 
over the last two decades were also utilized. It is shown analytically and experi- 
mentally that in non-stationary flows six domains exist in the (M,, 0,) plane where 
regular reflexion (RR), single-Mach reflexion (SMR), complex-Mach reflexion (CMR) 
and double-Mach reflexion (DMR) can occur. The transition boundaries between these 
regions were all established analytically. The experimental results from different 
sources substantiate the present analysis, and areas of disagreement which existed 
in the literature are now clarified and resolved. It is shown that real-gas effects have 
a significant influence on the size of the regions and their boundaries. In  addition, 
isopycnics (constant density lines) are given for the four types of reflexion, as well 
as the density distribution along the wedge surface. This data should provide a solid 
base for computational fluid dynamicists in comparing numerical techniques with 
actual experimental results. 

1. Introduction 
When a planar moving shock wave encounters a sharp compressive corner in a 

shock tube, two processes take place simultaneously. The incident shock wave is 
reflected by the wedge surface, whereas the induced non-stationary flow behind it is 
deflected by the wedge corner. In  the following, the first process will be referred to as 
shock-wave reflexion, the second as flow deflexion, and the overall phenomena as 
shock-wave diffraction. 

Shock-wave diffractions depend on three factors: ( 1 )  Mach number M, of the inci- 
dent shock wave; (2) corner wedge angle 0,; (3) initial thermodynamic state of the 
gas, i.e. temperature To and pressure Po (for a perfect gas, these are not required). 

Four different types of reflexion have been observed in shock-tube experiments. 
They are regular reflexion (RR), single-Mach (SMR), complex-Mach (CMR) and 
double-Mach reflexions (DMR). An interferogram of each reflexion as well as explans- 
tory sketches are shown in figure 1 (plate 1).  The phenomena of RR and SMR were 
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first discovered by E. Mach (1878), CMR by Smith (1945) and DMR by White (1951) 
The reflexion and diffraction phenomena have been investigated quite intensively in 
the last three decades by many researchers. Unfortunately, however, most of these 
analytical and experimental investigations were done on diatomic gases such as air, 
oxygen and nitrogen (von Neumann 1943, 1945; Seeger & Polacheck 1943; Smith 
1945; Taub 1947; Bleakney & Taub 1949; Fletcher 1951; White 1951; Jones, Martin 
& Thornhill 1951; Kawamura & Saito 1956; Molder 1960, 1979; Henderson 1964; 
Gvozdeva et al. 1969; Law & Glass 1971; Henderson & Lozzi 1975; Bazhenova, 
Fokeev & Gvozdeva 1976; Auld & Bird 1976; Ben-Dor & Glass 1978, 1979; Ben-Dor 
1978a, b ) .  Very few researchers investigated the phenomena in monatomic gases 
(Gvozdeva et al. 1969; Bazhenova et a2. 1976; Molder 1979; Hornung, private com- 
munication; Hornung, Oertel & Sandeman 1979; Ben-Dor 1978 a, b) .  Consequently, 
unlike a diatomic gas where the domains of different types of reflexion and their 
transition boundaries were established analytically and experimentally in fina! and 
complete form by Ben-Dor & Glass (1979) for both perfect and imperfect diatomic 
gases, a lack of analytical and experimental information both for perfect and imper- 
fect monatomic gases exists in the literature. We have therefore tried to rectify this 
situation by establishing the domains and their boundaries analytically and experi- 
mentally in monatomic gases as well. 

2. Analysis 
As mentioned above the shock-wave reflexion process interacts with the flow de- 

flexion process to yield the overall shock-wave diffraction phenomenon. In  the follow- 
ing, each of these processes is discussed in detail. 

Shock-wave reJlexion 
Ben-Dor & Glass (1979) and Ben-Dor (1978a) have recently shown the significance of 
real-gas effects on shifting the transition lines between the domains of different re- 
flexions. The formation and termination criteria of RR, SMR, CMR and DMR are 
all discussed in detail by Ben-Dor ( 1 9 7 8 ~ ) ;  consequently, only a brief discussion 
follows. 

The criterion for the termination of RR makes use of the boundary condition that 
the flow downstream of the reflexion point must be parallel to the wall, i.e. 8, + 8, = 0 
(8, and 8, are the flow deflexions through the incident and reflected shock waves, 
respectively). When this is violated [i.e. 8, decreases to a point where it forces 8, to 
exceed in magnitude the maximum deflexion value 8, of the flow in state ( l ) ,  figure 
1 (a)], RR terminates. Therefore the termination criterion is 

e,+e,, = 0. (1) 

This criterion was first established by von Neumann (1943). Henderson & Lozzi 
(1975) advanced another criterion for the termination of RR. However, Hornung 
(private communication), Hornung et al. (1979) and Ben-Dor & Glass (1979) have 
recently shown that the Henderson & Lozzi criterion is not applicable to non-sta- 
tionary flows. Hornung and Hornung et al. (1979) advanced another criterion for the 
termination of RR that differs only slightly from the ‘detachment criterion’ described 
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( C )  

FIGURE 2. I md R polar combination for change-over Mach number M,, in argon. 
M,, = 2.453, M, = 1.540, e, = 5i.130. 

by (1).  They advanced the suggestion that RR terminates when the flow behind the 
reflected shock wave becomes sonic with respect to the reflexion point, i.e. 

e,+e, = 0. ( l a )  

Practically, however, the difference between (1) and (1 a) is too small to distinguish 
between them and hence, in the following, only (1) is considered. 

In  the (P ,  0 )  plane (pressure-deflexion shock polars), the detachment criterion 
corresponds to the case where the R polar becomes tangent to the P axis. It is important 
to mention that Kawamura & Saito (1956) were the first to notice that the point of 
tangency between the R polar and the P axis can be outside or inside the I polar, 
depending on whether the value of No (M, = M,sec0,J is greater or less than a 
certain change-over value M,. Unlike the case of a diatomic gas for which different 
values of M, are reported by various investigators (Kawamura & Saito 1956; Hender- 
son & Lozzi 1975; Molder 1979; Ben-Dor & Glass 1978), only one value is reported for 
a perfect monatomic gas by Molder (1979) who calculated M, = 2.470. The value 
calculated by us for perfect and imperfect argon is M, = 2.453 (M' = 1.540 and 
0, = 51.13'). The shock-polar combination for this condition is shown in figure 2. 

When RR terminates three different types of reflexion, SMR, CMR and DMR, can 
occur depending on the Mach number of the flow behind the reflected shock wave R. 
As long as the flow behind R in state 2 is subsonic with respect to the triple point T, 
i.e. M,. -= 1, SMR (figure 1 b )  occurs. When this flow becomes supersonic with respect 

24 FLY 96 
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FINIRE 3. Regions of different oblique shock-wave reflexions in (Ms, 0;) plane. Lines (1) to (4) 
are for imperfect argon with Po = 1, 10, 100 and 1000 Tom, respectively, and To = 300 "K. 
Line (5) is for a perfect monatomic gas y = f. 

to T, SMR terminates and a kink K develops in R resulting in a CMR (figure lc) .  
Consequently, the SMR e CMR transition criterion is 

= 1. (2) 

CMR terminates when the flow behind R becomes supersonic with respect to the kink 
K ;  thus the CMR e DMR transition criterion is 

MzK = 1. (3) 

The non-stationary shock-wave-reflexion domain8 in the (M,, OL) plane for perfect 
and imperfect argon are shown in figure 3. In addition to the above-mentioned four 
types of reflexion domains, there is also a domain of no reflexion (NR). It is shown 
subsequently, however, that this domain disappears when the vertical axis is trans- 
formed from the effective wedge angle OhJ to the actual wedge angle 0,. (Note that 
6; = O , + x  and x is the triple-point trajectory angle.) The dashed boundary lines 
are for a perfect monatomic gas while the solid lines are for argon in ionization equili- 
brium with four different initial pressures (Po = 1, 10, 100 and 1000 Torr) and a con- 
stant initial temperature (To = 300 "K). The significance of real-gas effects in shifting 
the boundary lines can be clearly seen in figure 3. Note that the sharp boundary 
lines which exist for a perfect gas between the domains of different types of reflexion 
are replaced by a multiplicity of lines depending on the initial pressure (when the 
temperature is fixed). For example, one should expect a SMR for M, = 10 and OL = 30" 
when Po > 100 Torr and a CMR when Po -= 100 Torr. 

It is worthwhile mentioning that all the lines shown in figure 3 were obtained by 
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solving the oblique shock-wave equations that describe a RR or a three-shock con- 
fluence of the first triple point of SMR, CMR and DMR. These equations were solved 
with and without real-gas effects. To the best of our knowledge, this is probably the 
first time that these equations were solved and the results are presented for perfect 
and imperfect monatomic gases (for details see Ben-Dor 1978a). If the incident shock- 
wave Mach number is fixed while varying the effective wedge angle 0; (or actual 
wedge angle 0,) different domains of reflexion are encountered. The different sequences 
of events are: 1-00 < M, < 1.85, RR + SMR (see point a);  1.85 < M, < 3.17, RR + 
CMR + SMR (see point b ) ;  for M, > 3.17, RR + DMR + CMR + SMR. With a 
proper choice of 0; (or 0,) RR and SMR can occur for any incident shock-wave 
Mach number M,, while the other reflexions are limited to defined values of M, 
e.g.; CMR can occur only for M, > 1.85 (see point a )  and DMR for M, > 3.17 (see 
point b) .  

Since Mo = M, sec 6; (where 0; = 0, + x and x is the triple-point trajectory angle) 
and $o = 90' - 0;, one might conclude that the domains of different types of reflexion 
shown in figure 3 are also valid for steady flows. However, besides the fact that the 
termination csiterion for RR in steady flows is different from that of non-stationary 
flows for Mo > M,, (Henderson & Lozzi 1975; Hornung, private communication; 
Hornung et al. 1979), CMR and DMR cannot occur in steady flows (Ben-Dor 1978a). 
Consequently, only two reflexion domains are possible, RR and SMR where the flow 
behind the reflected shock wave can be either subsonic or supersonic. 

The vertical axis 0; of figure 3 equals 0, + x in the domains of SMR, CMR and DMR 
and 0, in the domain of RR where x = 0 (x is the triple-point trajectory angle, see 
figure 1) .  Therefore, in order to obtain the domains of different reflexion processes 
in a more physical plane, i.e. the (M,,0,) plane, x should be subtracted from the 
boundary lines of figure 3. Law & Glass (1971) developed a graphical method for 
predicting x. An analytical version of their graphical method which was found to be 
in better agreement with experiments was later developed by Ben-Dor & Glass (1979). 
The method of Law & Glass (1971) assumes a straight Mach stem normal to the wedge; 
consequently the value of x can be found from the simple geometrical relation 

x = go"-$,, (4) 

where q5,, the angle of incidence between the Mach stem and the oncoming relative 
flow, is found by solving the oblique shock-wave equations that describe the triple 
point (see Ben-Dor 1978a for details). Since this method fails to predict the value of 
x for small wedge angles, an alternative method for very small wedge angles is sug- 
gested in the following. This method is based on the experimental fact that at  small 
wedge angles a SMR occurs even though the flow behind the incident shock wave is 
subsonic with respect to the reflexion point P. Thus the triple-point trajectory angle 
plays a significant role (at very small wedge angles) when it makes the effective wedge 
angle 0; = 0,+x large enough so that the flow behind the incident shock wave will 
always be supersonic (M, > 1)  with respect to the triple point. Consequently, a 
relation of the form O&,,l=l = 0;(M,, Po, To), for which the flow behind the incident 
shock wave is exactly sonic, can be found easily (see line M, = 1 for To = 300 OK and 
Po = 1, 10, 100 and 1000 Torr, respectively, in figure 3). Once this relation is derived. 

can be calculated from 
x = %11111=1 -Ow* (5) 

'24-2 
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FIGURE 6. Regions of different oblique shock-wave reflexions in (Ma, 8,) plane. All 
boundary lines are for imperfect argon with Po = 16 Torr and !Po = 300 OK. 

The dependence of x on Ma and 0, using our analytical version of the method de- 
veloped by Law & Glass (1971) [equation (4)] and the present method for small wedge 
angles [equation (5)] are shown in figures 4 and 5, respectively. The solid lines are for 
imperfect argon with Po = 15 Torr and To = 300 OK and the dashed lines are for a 
perfect monatomic gas. It can be seen that the imperfect-gas lines (solid) start to 
diverge from the perfect-gas lines (dashed) a t  M, - 7 and hence the perfect-gas 
model is adequate in the range 1 < M, < 7. Note that the perfect-gas lines level out 
as Ma increases, resulting in a situation in which x is independent of Ma, i.e. x = ~ ( 6 , ) .  
In reality, however, ionization starts at M, > 7 and consequently the dependence of 
x upon Ma increases. It is worth mentioning that although figure 5 is based only on the 
experimental fact that SMR occur even for very low wedge angles, it  resembles the 
properties of figure 4 (the curves for 8, < 15"), which is based on the reasonable 
physical assumption of a straight Mach stem. In  both figures 4 and 5, x is a decreasing 
function of Ma and 0,. However for an imperfect gas the dependence of x upon M, 
is significant as M, increases due to ionization, while the perfect-gas lines (dashed) 
level out, resulting in a situation in which x is independent of Ma. 

The non-stationary shock-wave reflexion phenomenon in the (Ma, 8,) plane, i.e. 
figure 3 with x subtracted, is shown in figure 6. Only lines corresponding to Po = 15 Torr 
and To = 300 OK are drawn. Note that the NR domain has disappeared. Therefore 
an incident shock wave will always reflect when it collides with a compression corner 
in a shock tube. 



742 G. Ben-Dor and I .  I .  G h a  

60 

50 

40 
0 

5 
5 

-2 

2 

30 

3 
3 

U 

20 

10 

0 

I 1 

M , ' <  1 M , ' >  1 +* 
A 

Attached 
I 

1 4 I 10 
Incident shock-wave Mach number, M ,  

FIGURE 7. Deflexion processes of shock-induced quasi-steady flow (2') aa a function of M,and 8,. 
Linea (1)  t o  (4) are for imperfeot argon, To = 300 O K ,  and Po = 1, 10, 100 and 1000 Torr, respec- 
tively. Line (6) is for a perfect monatomio gas, y = t. 

Induced $ow de$exim 
Consider a planar shock wave propagating in a shock tube (figure 7) and denote the 
induced flow behind it as (2'). For any given set of initial conditions (Po and To) and 
incident shock Mach number M,, the induced flow Mach number M2, as well aa its 
pressure Pr and temperature la. can be calculated. Consequently, the corresponding 
sonic deflexion angle 0&, and the angle of maximum deflexion eman for this induced 
flow can be determined. Thus the (M,, 0,) plane is now divided into two main regions. 
One region corresponds to Ma. < 1 where the induced flow is subsonic and can turn 
the corner subsonically. The other region corresponds to Ma* > 1, where the flow is 
supersonic. The latter region can be further divided into three sub-regions of different 
flow deflexion processes: 0 < 0, c 0 , ,  for deflexion through a straight and attached 
shock wave, O&, < 0, < oman for deflexion through a curved and attached shock wave, 
and 0, > ern%, where the deflexion is through a curved and detached shock wave. 
For practical purposes, since the maximum separation between O&, and OM is usually 
very small (less than lo), only two regions, 0 < 0, < 0,. where the shock wave is 
attached and 0, > Om2, where it is detached, need be considered. 

The domains of the different types of flow-deflexion processes for argon in the 
(N,, 8,) plane are shown in figure 7. The dashed line is for a perfect monatomic gaa 
(y  = 8) and the solid lines are for imperfect argon with different initial pressures 
(Po = 1, 10, 100 and 1000 Torr) and a constant initial temperature (To = 300 OK). 

It can be seen again that the imperfect-gas boundary lines start to diverge from the 
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FIGURE 8. Six domains and their transition boundaries of non-stationary shock-wave 
diffraction in (A&, 8,) plane. Imperfect argon, Po = 15 Torr, To = 300 OK (see table 1).  

perfect-gas line (dashed) a t  relatively high values of M, (i.e. M, M 7.3). Consequently, 
the perfect-gas model is adequate in the range M, -= 7.3. Note that the line M,. = 1.00 
corresponds to M, = 2-758 for both perfect and imperfect gases. The dependence of 
the deflexion process on real-gas effects (at high values of M,) is again clearly seen 
(figure 7).  For M, = 10 and 8, = 10' the flow will negotiate the corner through an 
attached shock wave if Po < 10 Torr or a detached shock wave if Po 3 100 Torr. 

Shock-wave diflranction 

The overall shock-wave diffraction phenomenon is obtained by superimposing the 
shock-wave reflexion process (figure 6) and the flow-deflexion process (figure 7).  It 
has been shown by Ben-Dor & Glass (1979) that owing to the interaction of the shock- 
wave reflexion and induced flow-deflexion processes, the subsonic turning region 
shown in figure 7 cannot materialize. Consequently, since four shock-wave reflexions 
and two flow deflexions are possible, a maximum of eight different types of shock- 
wave diffraction might hypothetically be obtained. Figures 6 and 7 were superimposed 
to obtain figure 8. For clarity, only lines corresponding to imperfect argon at Po = 15 
Torr and To = 300 OK are reproduced. In  the range 1 < M, < 10 only six diffractions 
out of the maximum eight are possible. The two unobtainable diffractions are a RR 
and a DMR with an attached shock wave at  the corner. However, if the two lines 
8, + 8, = 0 and M2R = 1.00 and the attachedldetached line (8, = Oms.) are extra- 
polated beyod M, = 10, they might intersect, making it possible to obtain the two 
missing diffractions. Note that this could also be obtained by reducing the initial 
pressure. The six different shock-wave diffractions in the range 1 < M, < 10 (figure 8) 
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Shook diffraction 

ihook Flow 
Region no. reflexion deffexion 

RR Detaohed 
S M R  Detached 
S M R  Attached 
CMR Detmhed 
CMR Attaohed 
DMR Detached 

TABLE 1. DifFraction regions in argon (me figure 8)  

are RR with a detached shock wave (region l),  SMR with a detached or an attached 
shock wave (regions 2 and 3, respectively), CMR with a detached or an attached shock 
wave (regions 4 and 5, respectively), and DMR with a detached shock wave (region 6). 
The six different types of diffractions are listed in table 1. 

3. Verification of diffraction domains and boundaries 
In  order to verify the above-discussed analyses of the shock-wave reflexion and 

diffraction phenomena, 48 successful experiments were done in the 10 cm x 18 cm 
UTIAS hypervelocity shock tube. A 23 cm diameter Mach-Zehnder interferometer 
was used for recording the non-stationary process. The light source consisted of a 
giant-pulse ruby laser. Simultaneous dual-frequency interferograms were taken at 
wavelengths of 6943 8 and 3471.5 8. Wedges with 6, = 2O, loo, 20°, 30°, 40°, 50' 
and 60' (5 1/30') were used. Each wedge was fastened to the lower wall of the test 
section of the shock tube. The clearance between the wedge and the shock tube side 
walls or windows was 0.025mm. Although this arrangement tends to introduce 
boundary-layer interaction at the wedge corner, it was adopted owing to the simplicity 
in design and the rigid fastening which is especially important on impact with a 
strong shock wave. For each wedge about seven experiments were made at the follow- 
ing nominal incident shock wave Mach numbers: M, = 2.0, 2.9, 4.4, 5.2, 6.0, 7.0, and 
8.0. Over this range the Mach number varied by about 0.1. The accuracy in mea- 
suring the shock wave Mach number was E(M,) = 0~0011M~+O-O1018M,, which 
gives a relative error of 1.25 yo a t  M, = 2-0 [ E  (M,) = 0.0251 and 1-90 yo at M, = 8.0 
[E(M,) = 0.1521. We did not go beyond M, = 8.0, as in similar previously conducted 
experiments in the same facility (Law & Glass 1971) the high-quality optical windows 
of the test section were burned. 

The initial pressure Po was measured with an oil manometer just after admitting 
the test gas, to an accuracy of E(Po) = C1.398 x 10-6H+ 0.07861 Tom, where H is the 
height difference in the manometer in millimetres. Since 15 Torr corresponds to 
H = 194 mm, an error of 0.54y0 [E(Po) = 0.0811 is associated with this measurement. 
The pressure Po was kept a t  15 Torr for the runs with M, = 4.4, 5.2, 6.0 and 7.0, 9.8 
Torr for M, = 8.0, and 50 Torr for M, = 2.0. The driving gases used to obtain the 
shock-wave Mach numbers with the given initial pressures were He, H, and CO,, 
respectively. The initial driver and test gas temperatures To were usually in the range 
295-299 OK, and measured to an accuracy of 0, l  OK. 
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FIGURE 9. Experimental verification of oblique shook-wave reflexion analysis (pseudo-stationary 
frame of reference). Imperfect argon, Po = 15 Torr, To = 300 "K. Present data: 0, DMR ; V , 
CMR; A, S M R ;  0, RR. Previously obtained data: V, CMR in argon (Law & Glass 1971); V, 
CMR in helium (Law 1970). Note the term reflexion is used since the results are plotted in the 
pseudo-stationary (M8, 19;) plane. 

In addition to our results (see Ben-Dor 19783 for a detailed listing of the initial 
conditions and the corresponding interferograms), the experimental data of Law & 
Glass (1971) in argon and helium, and Gvozdeva et al. (1969) and Bazhenova et al. 
.( 1976) in argon were also used. 

It is worth mentioning again that in the present analysis two different phenomena, 
the shock-wave reflexion process at  the wedge surface (figure 3), and the induced flow- 
deflexion process (figure 7) over the wedge corner were treated independently. The 
shock-wave reflexion process was then transformed from the (it&, 0;) plane (figure 3) 
to the actual (Ms, 0,) plane (figure 6), by subtracting from 0; the appropriate value 
of the triple-point trajectory angle x (figures 4, 5) ,  in order to superimpose these two 
processes (figures 6, 7), and then finally obtain the overall shock-wave diffraction 
process (figure 8). 

In the following, the above-mentioned analyses for the non-stationary reflexion of 
shock waves in the (Ma, 0;) and (Ms, 8,) planes, the methods of predicting x and the 
non-stationary diffraction of shock waves in the (Ns, 8,) plane are compared with 
experiments. The present experimental results (Ben-Dor 19783) in argon as well as 
some data from Law & Glass (1971) in argon and from Law (1970) in helium are all 
shown in figure 9 (a reproduction of figure 3 for Po = 15 Torr). Some experiments that 
are reported by Law & Glass as CMR lie inside the DMR domain (M, = 6.10 and 7-66, 
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FIUURE 10. Verification of x 218. M, with 8, and comparison with experiments. Solid lines, 
imperfect argon, Po = 15 Torr, To = 300 OK; dashed lines, perfect monatomic gas, y = t. 
All data points are from the present study. 8,: 0, 50"; 0, 40'; A ,  30"; V, 20'; 0 ,  10'. 

0, N 45"). These experiments, however, are surrounded by experimental points 
from the present study that showed a DMR. It is possible that the initial direction of 
the fringes chosen by Law & Glass (different from ours) was such that the R shock 
wave (figure Id)  of a DMR could not be seen clearly. Note that Bazhenova et al. (1976) 
also reported DMR in argon in a region where Law & Glass reported CMR configura- 
tions. 

Out of all the present experiments, only one (M, N 4, 0; N 45") that corresponds 
to a DMR lies outside its predicted region, in the CMR domain. This we believe is due 
to the fact that in calculating the CMR/DMR boundary line (MzK = 1.00) we have 
used a relation that was found to be in good agreement with experiments only in the 
range 0, < 40". For the range 0, > 40" the agreement became progressively worse 
(see Ben-Dor 1978a for details). It is worth mentioning that, apart from this slight 
disagreement, all the other experimental points lie inside their predicted domains. 

The present data (Ben-Dor 19783) for 0, = lo", Z O O ,  30", 40", 50" and 60" are shown 
in figure 10 (a reproduction of figure 4) in order to test the present analytical method 
(based on Law & Glass 1971, graphical method) for predicting x. Very good agree- 
ment can be seen with the wedge angles of 20", 30" and 40" while for 10" and 50" the 
actual value of x is smaller than the predicted one by more than 1" (the error bar). 
For these two wedge angles, the agreement is fairly good for small values of M, 
(M, < 3 for 0, = 50" and M, < 5 for 0, = 10") and becomes progressively worse as 
M, increases. 

The data points for 13, = 2" are shown in figure 11 (a reproduction of figure 5 for 
0, = 2"). The agreement between theory and experiment is fairly good for low and 
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FIGURE 11. Variation of x ws. M, for small 8, and comparison with experiments. Solid line, 
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high Mach numbers while in the range 3 < M, < 6 it is not so good. It should be men- 
tioned here that owing to numerical convergence problems it was not possible to 
predict x for these small wedge angles using our analytical version of the graphical 
method of Law & Glass (1971). 

The data of Law & Glass (1971) in helium, Gvozdeva et al. (1969), Law & Glass 
(1971) and the present results in argon are all added to figure 12 (a reproduction of 
figure 6) in order to check the present analysis of non-stationary oblique shock-wave 
reflexion in the (M,, 6,) plane. Very good agreement with the calculated domains and 
transition boundaries can be seen. The few experimental points that lie outside their 
predicted region have already been discussed and accounted for. Therefore it can be 
concluded that the present analysis of non-stationary reflexions of oblique shock 
waves in the (M,, Ow) plane has been substantiated and verified. 

The present data in argon are all shown in figure 13 (a reproduction of figure 8). 
All the experimental points, except the one a t  M, = 4.44 and Ow = 20' (discussed 
previously), lie inside their predicted domains. Consequently, it  can be concluded that 
the present analysis of non-stationary diffraction of oblique shock waves has been 
substantiated and verified. 

Unfortunately, out of the six different shock-wave diffractions predicted by the 
present analysis (table l), only five have been observed experimentally. Theremainder, 
a CMR with an attached shock wave at the wedge corner (region 5,  figure 8) was not 
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tested since its domain starts at M, = 9.4, which is beyond the upper limit of incident 
shock waves we could safely use (N, N 8) without damaging the high quality optical 
windows of the test section. However, in light of the verification of five regions out 
of the six listed in table 1, and our work in diatomic gases (Ben-Dor & Glass 1979), 
we believe that we can conclude that the present analysis for the diffraction of oblique 
shock waves in non-stationary flows is substantiated, and that six different types of 
shock-wave diffractions exist in the range 1 < M, < 10. 

4. Density fields 
Interferograms corresponding to RR, SMR, CMR and DMR in argon are shown in 

figures 1 4 ( a d )  (plates 2, 3), respectively. The density field associated with each 
diffraction in the form of isopycnics (n)  are shown in figures 15(u-d). The density 
distribution along the wedge surface and the shock-tube wall in its vicinity are given 
in figures 16 (a-d) .  In  the following, a general discussion is given about each diffraction 
as well as their similarities and differences. 

The density field was deduced from the interferograms using a very accurate, semi- 
computerized method that was developed recently a t  UTIAS (Ben-Dor, Whitten & 
Glass 1979). It requires the transformation of the location of fringes into digital 
form with respect to a chosen reference point. The same physical point is chosen as 
a reference point for all interferograms (a flow and a no-flow interferogram for each 
wavelength) for each experiment and is used as an origin. Each fringe can then be 
thought of as a locus of ( x , y )  points, i.e. a line having a constant value of fringe 
number (interference order). With all four interferograms of one experiment digitized 
in this fashion, with respect to the same reference point, the actual fringe shift, i.e. 
change in the interference order at any (x,y) co-ordinate, can be easily determined. 
The interferograms were enlarged to about four times their actual size in order to 
make the entire digitizing procedure much easier and more accurate. Once the inter- 
ferograms were digitized, the complete process of analysing the interferograms was 
done using an IBM 1130 computer (for details see Ben-Dor et al. 1979). 

The density field corresponding to a RR is shown in figure 15 (a). A uniform density 
area can be seen behind the reflexion point P and the straight portion of the reflected 
shock wave R. The density distribution along the wedge for this RR is shown in 
figure 16 (a). The uniform region behind the reflected shock wave is clearly seen. It is 
terminated by an expansion wave (sound pulses) generated by the wedge corner. 
Consequently, isopycnic n = 4 (figure 15a) indicates the upstream distance to which 
the presence of the wedge corner is felt. 

The density field of the SMR shown in figure 15 ( b )  indicates that a weak expansion 
wave originates from the reflected shock wave R near the triple point T (figure 1Sb). 
The strength of this expansion wave in terms of the density ratio across it is 0.969 
(3.560/3.675). This is similar to the results we have recently presented on diatomic 
gases (Ben-Dor & Glass 1979). The density distribution for this case (figure 16b) 
indicates that the flow passing through the Mach stem is being further compressed 
from e to d. At the location where the slipstream disappears into the boundary layer 
a sharp density jump (d-d) is clearly seen. 

The density field of a CMR is shown in figure 15 (c). Unlike the foregoing case of a 
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SMR where the converging isopycnics a t  the reflected shock wave R indicated the 
existence of an expansion wave, here they correspond to a weak compression wave 
(follow the isopycnic number). The density ratio across this compression wave is 
1.031. This compression wave emanates from the kink K in the reflected shock wave. 
The flow passing through the Mach stem is further compressed on the way towards 
the place where the slipstream curls back. Unlike the foregoing case of a SMR, here 
a smooth density change is seen at point d (figure 16c). This probably arises from the 
slipstream as it curls back far away from the wall, causing the expected discontinuity 
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near the wall to smear out. The difference between the two slipstreams of these cases 
are clearly seen in the corresponding interferograms (figures 14b, c). 

The density field of a DMR is shown in figure 15 (d) .  The second slipstream of this 
DMR is not seen in figure 14 (d), as the density change across it was not large enough 
to cause a visible fringe shift. However, in figure 15 (d) ,  two fringes originating from 
both sides of the second triple point TI have the same value (n = 7). Consequently, 
they form a ‘corridor’ for the second slipstream to exist, as shown schematically by 
the dashed line. 

Although the density fields associated with the various shock-wave diffractions 
differ greatly from each other, they do have some similarities. In all four cases which 
correspond to a flow deflexion through a detached shock wave, similar density fields 
can be seen between the detached shock wave and the wedge corner (figures 15a-d). 
After the density jump (b-b) across the detached shock-wave (figures 16a-d) the 
flow is iurther compressed (b-c) on its way towards the wedge corner, where it stag- 
nates. From there on, the density drops gradually before it starts to increase again 
towards the region affected by the reflexion process. As mentioned above, the flow 
passing through a Mach stem of a SMR, CMR and DMR is further compressed on 
its way towards the place where the slipstream disappears into the boundary layer 
(figures 16b-d). 

As mentioned earlier, in the foregoing four different types of shock-wave diffraction, 
the shock-induced flow deflected over the corner was through a detached shock wave. 
Unfortunately, the flow field associated with deflexion through attached shock waves 
could not be obtained for the following reasons. The CMR with an attached shock wave 
(region 5, figure 8) starts at M, = 9.4, which is beyond the upper limit of incident 
shock waves we could safely use (M,, < 8) without damaging the high quality optical 
windows of the test section. The domain of a SMR with an attached shock wave starts 
at M, = 2.758; however, it involves very small wedge angles (0, .c 10”). The wedge 
angle we have used in that region was 0, = 2‘ . Vnfortunately, the tip of our model 
for a small wedge angle was not sharp, and an ideally attached shock wave was not 
obtained. 

The density field a t  any point (x, y) can be calculated either by interpolating between 
or extrapolating beyond the vicinity of that point. However, since the density 
difference between the isopycnics is small, any region between the isopycnics can be 
assumed to have a uniform average density. A region where the change in the density 
was not sufficiently Iarge to obtain isopycnics within the limits of accuracy can be 
assumed to be uniform with the indicated density number. For example, region n = 3 
that is bounded by R, R, and S in figure 15(d) is uniform with p = 6.651~~. Each 
fringe shift could be measured to an accuracy of 0.05 to 0.1 of a fringe. Consequently, 
the relative error in the measured density is given in each figure by Ap/po, which is 
fixed for a particular interferogram. It can be as high as 13.2 yo for po = 0.3256 x 

g/cm3 (figure Ha). 
Referring the error to po is a severe test. The relative error could be reduced by using 
pl, which is also well known. The position in the (3,~) plane of any point of a given 
isopycnic is known to 2 1 mm. 

The major importance of these data lies in the fact that argon behaves as a perfect 
gas in this range of incident shock-waves (M, c 7). Consequently, unlike our data for 

g/cm3 (figure 15c) and as low as 4 Yo for po = 0.1064 x 
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nitrogen (Ben-Dor & Glass 1979) where all the analysed diffractions were in a range 
where vibrational excitation was significant (M, > 2 for nitrogen), the density fields 
and distributions shown in figures 15 and 16, respectively, are free from real-gas 
effects. Therefore, our data form a very accurate and comprehensive base for com- 
parison with inviscid numerical analyses, as the refraction errors due to sidewall 
boundary layers are negligible (Glass & Liu 1978; Liu, Whitten & Glass 1978). Con- 
sequently, the interferometric isopycnics of the flow can be used now and in the future 
as a check in the development of computational methods for non-stationary oblique 
shock-wave reflexions. 

5. Discussions and conclusions 
The above comparisons of our analysis and experiments from different sources 

verify the domains and boundaries of non-stationary reflexion of oblique shock waves 
in the (M,, 0;) and (M,, 0,) planes, as well as the non-stationary diffraction of oblique 
shock waves in the (M,, 0,) plane. It was shown that six regions exist for a monatomic 
gas, consisting of the basic four types of regular, single-Mach, complex-Mach and 
double-Mach reflexions. The transition boundaries depend on the incident shock-wave 
Mach number M, and the compression wedge angle 0, for a perfect gas and addition- 
ally on the initial temperature To and pressure Po for an imperfect gas. Unlike steady 
flows in wind tunnels, where only regular and single-Mach reflexions are possible, 
non-stationary flows in shock tubes give rise to two additional complex- and double- 
Mach reflexions. The fundamental reason lies in the fact that non-stationary shock- 
wave diffractions consist of two elements. One is the shock-wave reflexion process 
at  the wedge surface and the other is the deflexion of the flow over the wedge induced 
by the moving shock wave. This flow can be subsonic, transonic or low supersonic. 
The deflexion of the supersonic flow over the wedge also produces attached or de- 
tached bow waves. 

The analysis was substantiated by nearly 50 interferometric experiments conducted 
in the CTIAS I 0  cm x 18 cm hypervelocity shock tube during the present study as 
well as those from Law & Glass (1971) and other sources. The results fall into the six 
predicted domains separated by their transition boundaries. A new method for the 
prediction of x at very low wedge angles was introduced. This method complements 
the method of Law & Glass ( 1  97 l),  which was found to be good only in the range 
5" < 0, < 45". Although these two methods predict x quite well, a more accurate 
analytical method is needed. The method for predicting the second triple-point 
trajectory angle x' of a DMR also needs further improvement. 

The very comprehensive (and first of its kind for monatomic gases) isopycnic data 
complement our previous work in diatomic gases (Ben-Dor & Glass 1979). The results 
provide an important base for testing available and future computational codes 
describing such complex flows of perfect gases. So far really reliable numerical 
methods in this area have not been developed to date, despite several attempts in the 
C.S.S.R. and U.S.A. (Ben-Dor & Glass 1978). Undoubtedly, these methods will be 
forthcoming in the future which will be able to deal with all four types (RR, SMR, 
CMR, DMR) of oblique shock-wave reflexions. 

Finally, it  may be concluded that our analyses and numerous experiments in 
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monatomic and diatomic gases have finally brought order and clarity into a very 
complex gasdynamic area which has occupied many researchers over the world for 
over three decades, 
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FIGURE 1. Illustration of four possible oblique shock-wave reflexions. (Interferograms are on 
the left and explanatory sketches on the right.) The interferograms ( A  = 6943 d) were taken 
with the 23 ern diameter Mach- -Zehnder interferometer of the CTIAS 10 cm x 18 em hyper- 
velocity shock tube in argon at initial pressure Po = 15 Torr and temperature To % 300 'K. 
I ,  I,, incident shock waves; R, R ,  ,reflected shock waves; M ,  M,,  Mach stems; S, S,, slipstreams; 
T, T,, triple points; 2,  x', triple-point path angles: K ,  kink; (0)- ,5) ,  thermodynamic states; 
8,, actual wedge angle; Ok,, effective wedge angle; M,, shock wave Mach number. (a) Regular 
reflexion (RR), 8, = 60', M, = 2.03. (b )  Single-Mach reflexion (SMR), 8, = 20',  Ms = 2.82. 
( c )  Complex-Mach reflexion (CMR), 8, = 30', M 5.29. ( d )  Double-Mach reflexion (DMR), 
O x  = 5 0 ' ,  M, = 7.03. 

(FucCng p .  756) 
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